首页> 外文OA文献 >Bootstrapping incremental dialogue systems from minimal data: the generalisation power of dialogue grammars
【2h】

Bootstrapping incremental dialogue systems from minimal data: the generalisation power of dialogue grammars

机译:从最小数据引导增量对话系统:   对话语法的泛化能力

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate an end-to-end method for automatically inducing task-baseddialogue systems from small amounts of unannotated dialogue data. It combinesan incremental semantic grammar - Dynamic Syntax and Type Theory with Records(DS-TTR) - with Reinforcement Learning (RL), where language generation anddialogue management are a joint decision problem. The systems thus produced areincremental: dialogues are processed word-by-word, shown previously to beessential in supporting natural, spontaneous dialogue. We hypothesised that therich linguistic knowledge within the grammar should enable a combinatoriallylarge number of dialogue variations to be processed, even when trained on veryfew dialogues. Our experiments show that our model can process 74% of theFacebook AI bAbI dataset even when trained on only 0.13% of the data (5dialogues). It can in addition process 65% of bAbI+, a corpus we created bysystematically adding incremental dialogue phenomena such as restarts andself-corrections to bAbI. We compare our model with a state-of-the-artretrieval model, MemN2N. We find that, in terms of semantic accuracy, MemN2Nshows very poor robustness to the bAbI+ transformations even when trained onthe full bAbI dataset.
机译:我们研究了一种从少量未注释的对话数据中自动引入基于任务的对话系统的端到端方法。它结合了增量语义语法-带记录的动态语法和类型理论(DS-TTR)-强化学习(RL),其中语言生成和对话管理是一个联合决策问题。这样产生的系统是递增的:对话是逐字处理的,以前证明对支持自然的,自发的对话至关重要。我们假设语法中丰富的语言知识应该能够处理大量组合的对话变体,即使在很少对话的情况下也是如此。我们的实验表明,即使仅对0.13%的数据进行训练(5个对话),我们的模型也可以处理74%的Facebook AI bAbI数据集。它可以另外处理bAbI +的65%,bAbI +是我们通过系统地向bAbI添加增量对话现象(例如重新启动和自我更正)而创建的语料库。我们将模型与最新的模型MemN2N进行了比较。我们发现,就语义准确性而言,即使在完整的bAbI数据集上进行训练,MemN2N对bAbI +转换的鲁棒性也很差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号